Metamath Proof Explorer


Theorem nbior

Description: If two propositions are not equivalent, then at least one is true. (Contributed by BJ, 19-Apr-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Assertion nbior
|- ( -. ( ph <-> ps ) -> ( ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 norbi
 |-  ( -. ( ph \/ ps ) -> ( ph <-> ps ) )
2 1 con1i
 |-  ( -. ( ph <-> ps ) -> ( ph \/ ps ) )