Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 3-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nbn.1 | |- -. ph |
|
Assertion | nbn | |- ( -. ps <-> ( ps <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn.1 | |- -. ph |
|
2 | bibif | |- ( -. ph -> ( ( ps <-> ph ) <-> -. ps ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ps <-> ph ) <-> -. ps ) |
4 | 3 | bicomi | |- ( -. ps <-> ( ps <-> ph ) ) |