Metamath Proof Explorer


Theorem nbn

Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 3-Oct-2013)

Ref Expression
Hypothesis nbn.1
|- -. ph
Assertion nbn
|- ( -. ps <-> ( ps <-> ph ) )

Proof

Step Hyp Ref Expression
1 nbn.1
 |-  -. ph
2 bibif
 |-  ( -. ph -> ( ( ps <-> ph ) <-> -. ps ) )
3 1 2 ax-mp
 |-  ( ( ps <-> ph ) <-> -. ps )
4 3 bicomi
 |-  ( -. ps <-> ( ps <-> ph ) )