Step |
Hyp |
Ref |
Expression |
1 |
|
nbupgruvtxres.v |
|- V = ( Vtx ` G ) |
2 |
|
nbupgruvtxres.e |
|- E = ( Edg ` G ) |
3 |
|
nbupgruvtxres.f |
|- F = { e e. E | N e/ e } |
4 |
|
nbupgruvtxres.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
5 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
6 |
5
|
nbgrssovtx |
|- ( S NeighbVtx K ) C_ ( ( Vtx ` S ) \ { K } ) |
7 |
|
difpr |
|- ( V \ { N , K } ) = ( ( V \ { N } ) \ { K } ) |
8 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
9 |
8
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
10 |
9
|
a1i |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) -> ( V \ { N } ) = ( Vtx ` S ) ) |
11 |
10
|
difeq1d |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) -> ( ( V \ { N } ) \ { K } ) = ( ( Vtx ` S ) \ { K } ) ) |
12 |
7 11
|
eqtrid |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) -> ( V \ { N , K } ) = ( ( Vtx ` S ) \ { K } ) ) |
13 |
6 12
|
sseqtrrid |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) -> ( S NeighbVtx K ) C_ ( V \ { N , K } ) ) |
14 |
13
|
adantr |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) -> ( S NeighbVtx K ) C_ ( V \ { N , K } ) ) |
15 |
|
simpl |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) -> ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) ) |
16 |
15
|
anim1i |
|- ( ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) /\ n e. ( V \ { N , K } ) ) -> ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ n e. ( V \ { N , K } ) ) ) |
17 |
|
df-3an |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ n e. ( V \ { N , K } ) ) <-> ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ n e. ( V \ { N , K } ) ) ) |
18 |
16 17
|
sylibr |
|- ( ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) /\ n e. ( V \ { N , K } ) ) -> ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ n e. ( V \ { N , K } ) ) ) |
19 |
|
dif32 |
|- ( ( V \ { N } ) \ { K } ) = ( ( V \ { K } ) \ { N } ) |
20 |
7 19
|
eqtri |
|- ( V \ { N , K } ) = ( ( V \ { K } ) \ { N } ) |
21 |
20
|
eleq2i |
|- ( n e. ( V \ { N , K } ) <-> n e. ( ( V \ { K } ) \ { N } ) ) |
22 |
|
eldifsn |
|- ( n e. ( ( V \ { K } ) \ { N } ) <-> ( n e. ( V \ { K } ) /\ n =/= N ) ) |
23 |
21 22
|
bitri |
|- ( n e. ( V \ { N , K } ) <-> ( n e. ( V \ { K } ) /\ n =/= N ) ) |
24 |
23
|
simplbi |
|- ( n e. ( V \ { N , K } ) -> n e. ( V \ { K } ) ) |
25 |
|
eleq2 |
|- ( ( G NeighbVtx K ) = ( V \ { K } ) -> ( n e. ( G NeighbVtx K ) <-> n e. ( V \ { K } ) ) ) |
26 |
24 25
|
syl5ibr |
|- ( ( G NeighbVtx K ) = ( V \ { K } ) -> ( n e. ( V \ { N , K } ) -> n e. ( G NeighbVtx K ) ) ) |
27 |
26
|
adantl |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) -> ( n e. ( V \ { N , K } ) -> n e. ( G NeighbVtx K ) ) ) |
28 |
27
|
imp |
|- ( ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) /\ n e. ( V \ { N , K } ) ) -> n e. ( G NeighbVtx K ) ) |
29 |
1 2 3 4
|
nbupgrres |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ n e. ( V \ { N , K } ) ) -> ( n e. ( G NeighbVtx K ) -> n e. ( S NeighbVtx K ) ) ) |
30 |
18 28 29
|
sylc |
|- ( ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) /\ n e. ( V \ { N , K } ) ) -> n e. ( S NeighbVtx K ) ) |
31 |
14 30
|
eqelssd |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) /\ ( G NeighbVtx K ) = ( V \ { K } ) ) -> ( S NeighbVtx K ) = ( V \ { N , K } ) ) |
32 |
31
|
ex |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) ) -> ( ( G NeighbVtx K ) = ( V \ { K } ) -> ( S NeighbVtx K ) = ( V \ { N , K } ) ) ) |