Metamath Proof Explorer


Theorem nbusgrf1o

Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nbusgrf1o.v
|- V = ( Vtx ` G )
nbusgrf1o.e
|- E = ( Edg ` G )
Assertion nbusgrf1o
|- ( ( G e. USGraph /\ U e. V ) -> E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } )

Proof

Step Hyp Ref Expression
1 nbusgrf1o.v
 |-  V = ( Vtx ` G )
2 nbusgrf1o.e
 |-  E = ( Edg ` G )
3 eqid
 |-  ( G NeighbVtx U ) = ( G NeighbVtx U )
4 eleq2w
 |-  ( e = c -> ( U e. e <-> U e. c ) )
5 4 cbvrabv
 |-  { e e. E | U e. e } = { c e. E | U e. c }
6 1 2 3 5 nbusgrf1o1
 |-  ( ( G e. USGraph /\ U e. V ) -> E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } )