Metamath Proof Explorer


Theorem ncolne1

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
ncolne.x
|- ( ph -> X e. B )
ncolne.y
|- ( ph -> Y e. B )
ncolne.z
|- ( ph -> Z e. B )
ncolne.2
|- ( ph -> -. ( X e. ( Y L Z ) \/ Y = Z ) )
Assertion ncolne1
|- ( ph -> X =/= Y )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 ncolne.x
 |-  ( ph -> X e. B )
6 ncolne.y
 |-  ( ph -> Y e. B )
7 ncolne.z
 |-  ( ph -> Z e. B )
8 ncolne.2
 |-  ( ph -> -. ( X e. ( Y L Z ) \/ Y = Z ) )
9 4 adantr
 |-  ( ( ph /\ X = Y ) -> G e. TarskiG )
10 6 adantr
 |-  ( ( ph /\ X = Y ) -> Y e. B )
11 7 adantr
 |-  ( ( ph /\ X = Y ) -> Z e. B )
12 5 adantr
 |-  ( ( ph /\ X = Y ) -> X e. B )
13 eqid
 |-  ( dist ` G ) = ( dist ` G )
14 1 13 2 9 12 11 tgbtwntriv1
 |-  ( ( ph /\ X = Y ) -> X e. ( X I Z ) )
15 simpr
 |-  ( ( ph /\ X = Y ) -> X = Y )
16 15 oveq1d
 |-  ( ( ph /\ X = Y ) -> ( X I Z ) = ( Y I Z ) )
17 14 16 eleqtrd
 |-  ( ( ph /\ X = Y ) -> X e. ( Y I Z ) )
18 1 3 2 9 10 11 12 17 btwncolg1
 |-  ( ( ph /\ X = Y ) -> ( X e. ( Y L Z ) \/ Y = Z ) )
19 8 18 mtand
 |-  ( ph -> -. X = Y )
20 19 neqned
 |-  ( ph -> X =/= Y )