Metamath Proof Explorer


Theorem ncolne2

Description: Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019) TODO (NM): maybe ncolne2 could be simplified out and deleted, replaced by ncolcom .

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
ncolne.x
|- ( ph -> X e. B )
ncolne.y
|- ( ph -> Y e. B )
ncolne.z
|- ( ph -> Z e. B )
ncolne.2
|- ( ph -> -. ( X e. ( Y L Z ) \/ Y = Z ) )
Assertion ncolne2
|- ( ph -> X =/= Z )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 ncolne.x
 |-  ( ph -> X e. B )
6 ncolne.y
 |-  ( ph -> Y e. B )
7 ncolne.z
 |-  ( ph -> Z e. B )
8 ncolne.2
 |-  ( ph -> -. ( X e. ( Y L Z ) \/ Y = Z ) )
9 1 3 2 4 6 7 5 8 ncolcom
 |-  ( ph -> -. ( X e. ( Z L Y ) \/ Z = Y ) )
10 1 2 3 4 5 7 6 9 ncolne1
 |-  ( ph -> X =/= Z )