| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nconnsubb.2 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 2 |
|
nconnsubb.3 |
|- ( ph -> A C_ X ) |
| 3 |
|
nconnsubb.4 |
|- ( ph -> U e. J ) |
| 4 |
|
nconnsubb.5 |
|- ( ph -> V e. J ) |
| 5 |
|
nconnsubb.6 |
|- ( ph -> ( U i^i A ) =/= (/) ) |
| 6 |
|
nconnsubb.7 |
|- ( ph -> ( V i^i A ) =/= (/) ) |
| 7 |
|
nconnsubb.8 |
|- ( ph -> ( ( U i^i V ) i^i A ) = (/) ) |
| 8 |
|
nconnsubb.9 |
|- ( ph -> A C_ ( U u. V ) ) |
| 9 |
|
connsuba |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 11 |
5 6 7
|
3jca |
|- ( ph -> ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) ) |
| 12 |
|
ineq1 |
|- ( x = U -> ( x i^i A ) = ( U i^i A ) ) |
| 13 |
12
|
neeq1d |
|- ( x = U -> ( ( x i^i A ) =/= (/) <-> ( U i^i A ) =/= (/) ) ) |
| 14 |
|
ineq1 |
|- ( x = U -> ( x i^i y ) = ( U i^i y ) ) |
| 15 |
14
|
ineq1d |
|- ( x = U -> ( ( x i^i y ) i^i A ) = ( ( U i^i y ) i^i A ) ) |
| 16 |
15
|
eqeq1d |
|- ( x = U -> ( ( ( x i^i y ) i^i A ) = (/) <-> ( ( U i^i y ) i^i A ) = (/) ) ) |
| 17 |
13 16
|
3anbi13d |
|- ( x = U -> ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) <-> ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) ) ) |
| 18 |
|
uneq1 |
|- ( x = U -> ( x u. y ) = ( U u. y ) ) |
| 19 |
18
|
ineq1d |
|- ( x = U -> ( ( x u. y ) i^i A ) = ( ( U u. y ) i^i A ) ) |
| 20 |
19
|
neeq1d |
|- ( x = U -> ( ( ( x u. y ) i^i A ) =/= A <-> ( ( U u. y ) i^i A ) =/= A ) ) |
| 21 |
17 20
|
imbi12d |
|- ( x = U -> ( ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) <-> ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) -> ( ( U u. y ) i^i A ) =/= A ) ) ) |
| 22 |
|
ineq1 |
|- ( y = V -> ( y i^i A ) = ( V i^i A ) ) |
| 23 |
22
|
neeq1d |
|- ( y = V -> ( ( y i^i A ) =/= (/) <-> ( V i^i A ) =/= (/) ) ) |
| 24 |
|
ineq2 |
|- ( y = V -> ( U i^i y ) = ( U i^i V ) ) |
| 25 |
24
|
ineq1d |
|- ( y = V -> ( ( U i^i y ) i^i A ) = ( ( U i^i V ) i^i A ) ) |
| 26 |
25
|
eqeq1d |
|- ( y = V -> ( ( ( U i^i y ) i^i A ) = (/) <-> ( ( U i^i V ) i^i A ) = (/) ) ) |
| 27 |
23 26
|
3anbi23d |
|- ( y = V -> ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) <-> ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) ) ) |
| 28 |
|
sseqin2 |
|- ( A C_ ( U u. y ) <-> ( ( U u. y ) i^i A ) = A ) |
| 29 |
28
|
necon3bbii |
|- ( -. A C_ ( U u. y ) <-> ( ( U u. y ) i^i A ) =/= A ) |
| 30 |
|
uneq2 |
|- ( y = V -> ( U u. y ) = ( U u. V ) ) |
| 31 |
30
|
sseq2d |
|- ( y = V -> ( A C_ ( U u. y ) <-> A C_ ( U u. V ) ) ) |
| 32 |
31
|
notbid |
|- ( y = V -> ( -. A C_ ( U u. y ) <-> -. A C_ ( U u. V ) ) ) |
| 33 |
29 32
|
bitr3id |
|- ( y = V -> ( ( ( U u. y ) i^i A ) =/= A <-> -. A C_ ( U u. V ) ) ) |
| 34 |
27 33
|
imbi12d |
|- ( y = V -> ( ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) -> ( ( U u. y ) i^i A ) =/= A ) <-> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 35 |
21 34
|
rspc2v |
|- ( ( U e. J /\ V e. J ) -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 36 |
3 4 35
|
syl2anc |
|- ( ph -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 37 |
11 36
|
mpid |
|- ( ph -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> -. A C_ ( U u. V ) ) ) |
| 38 |
10 37
|
sylbid |
|- ( ph -> ( ( J |`t A ) e. Conn -> -. A C_ ( U u. V ) ) ) |
| 39 |
8 38
|
mt2d |
|- ( ph -> -. ( J |`t A ) e. Conn ) |