Metamath Proof Explorer


Theorem ncoprmgcdgt1b

Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion ncoprmgcdgt1b
|- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> 1 < ( A gcd B ) ) )

Proof

Step Hyp Ref Expression
1 ncoprmgcdne1b
 |-  ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) )
2 gcdnncl
 |-  ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN )
3 nngt1ne1
 |-  ( ( A gcd B ) e. NN -> ( 1 < ( A gcd B ) <-> ( A gcd B ) =/= 1 ) )
4 2 3 syl
 |-  ( ( A e. NN /\ B e. NN ) -> ( 1 < ( A gcd B ) <-> ( A gcd B ) =/= 1 ) )
5 1 4 bitr4d
 |-  ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> 1 < ( A gcd B ) ) )