Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ncoprmgcdgt1b | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> 1 < ( A gcd B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncoprmgcdne1b | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
|
2 | gcdnncl | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
|
3 | nngt1ne1 | |- ( ( A gcd B ) e. NN -> ( 1 < ( A gcd B ) <-> ( A gcd B ) =/= 1 ) ) |
|
4 | 2 3 | syl | |- ( ( A e. NN /\ B e. NN ) -> ( 1 < ( A gcd B ) <-> ( A gcd B ) =/= 1 ) ) |
5 | 1 4 | bitr4d | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> 1 < ( A gcd B ) ) ) |