| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ncvr1.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							ncvr1.u | 
							 |-  .1. = ( 1. ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							ncvr1.c | 
							 |-  C = (   | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 5 | 
							
								1 4 2
							 | 
							ople1 | 
							 |-  ( ( K e. OP /\ X e. B ) -> X ( le ` K ) .1. )  | 
						
						
							| 6 | 
							
								
							 | 
							opposet | 
							 |-  ( K e. OP -> K e. Poset )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> K e. Poset )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							op1cl | 
							 |-  ( K e. OP -> .1. e. B )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. e. B )  | 
						
						
							| 10 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> X e. B )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. ( lt ` K ) X )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( lt ` K ) = ( lt ` K )  | 
						
						
							| 13 | 
							
								1 4 12
							 | 
							pltnle | 
							 |-  ( ( ( K e. Poset /\ .1. e. B /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. )  | 
						
						
							| 14 | 
							
								7 9 10 11 13
							 | 
							syl31anc | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( ( K e. OP /\ X e. B ) -> ( .1. ( lt ` K ) X -> -. X ( le ` K ) .1. ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							mt2d | 
							 |-  ( ( K e. OP /\ X e. B ) -> -. .1. ( lt ` K ) X )  | 
						
						
							| 17 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> K e. OP )  | 
						
						
							| 18 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. e. B )  | 
						
						
							| 19 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> X e. B )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. C X )  | 
						
						
							| 21 | 
							
								1 12 3
							 | 
							cvrlt | 
							 |-  ( ( ( K e. OP /\ .1. e. B /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X )  | 
						
						
							| 22 | 
							
								17 18 19 20 21
							 | 
							syl31anc | 
							 |-  ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X )  | 
						
						
							| 23 | 
							
								16 22
							 | 
							mtand | 
							 |-  ( ( K e. OP /\ X e. B ) -> -. .1. C X )  |