Step |
Hyp |
Ref |
Expression |
1 |
|
ncvr1.b |
|- B = ( Base ` K ) |
2 |
|
ncvr1.u |
|- .1. = ( 1. ` K ) |
3 |
|
ncvr1.c |
|- C = ( |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
1 4 2
|
ople1 |
|- ( ( K e. OP /\ X e. B ) -> X ( le ` K ) .1. ) |
6 |
|
opposet |
|- ( K e. OP -> K e. Poset ) |
7 |
6
|
ad2antrr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> K e. Poset ) |
8 |
1 2
|
op1cl |
|- ( K e. OP -> .1. e. B ) |
9 |
8
|
ad2antrr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. e. B ) |
10 |
|
simplr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> X e. B ) |
11 |
|
simpr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. ( lt ` K ) X ) |
12 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
13 |
1 4 12
|
pltnle |
|- ( ( ( K e. Poset /\ .1. e. B /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. ) |
14 |
7 9 10 11 13
|
syl31anc |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. ) |
15 |
14
|
ex |
|- ( ( K e. OP /\ X e. B ) -> ( .1. ( lt ` K ) X -> -. X ( le ` K ) .1. ) ) |
16 |
5 15
|
mt2d |
|- ( ( K e. OP /\ X e. B ) -> -. .1. ( lt ` K ) X ) |
17 |
|
simpll |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> K e. OP ) |
18 |
8
|
ad2antrr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. e. B ) |
19 |
|
simplr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> X e. B ) |
20 |
|
simpr |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. C X ) |
21 |
1 12 3
|
cvrlt |
|- ( ( ( K e. OP /\ .1. e. B /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X ) |
22 |
17 18 19 20 21
|
syl31anc |
|- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X ) |
23 |
16 22
|
mtand |
|- ( ( K e. OP /\ X e. B ) -> -. .1. C X ) |