Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | nd3 | |- ( A. x x = y -> -. A. z x e. y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv | |- -. x e. x |
|
2 | elequ2 | |- ( x = y -> ( x e. x <-> x e. y ) ) |
|
3 | 1 2 | mtbii | |- ( x = y -> -. x e. y ) |
4 | 3 | sps | |- ( A. x x = y -> -. x e. y ) |
5 | sp | |- ( A. z x e. y -> x e. y ) |
|
6 | 4 5 | nsyl | |- ( A. x x = y -> -. A. z x e. y ) |