Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ndisj | |- ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |- ( ( A i^i B ) =/= (/) <-> E. x x e. ( A i^i B ) ) |
|
2 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
3 | 2 | exbii | |- ( E. x x e. ( A i^i B ) <-> E. x ( x e. A /\ x e. B ) ) |
4 | 1 3 | bitri | |- ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) ) |