Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndisj | |- ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( ( A i^i B ) =/= (/) <-> E. x x e. ( A i^i B ) ) |
|
| 2 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 3 | 2 | exbii | |- ( E. x x e. ( A i^i B ) <-> E. x ( x e. A /\ x e. B ) ) |
| 4 | 1 3 | bitri | |- ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) ) |