Metamath Proof Explorer


Theorem ndisj

Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion ndisj
|- ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( ( A i^i B ) =/= (/) <-> E. x x e. ( A i^i B ) )
2 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
3 2 exbii
 |-  ( E. x x e. ( A i^i B ) <-> E. x ( x e. A /\ x e. B ) )
4 1 3 bitri
 |-  ( ( A i^i B ) =/= (/) <-> E. x ( x e. A /\ x e. B ) )