Step |
Hyp |
Ref |
Expression |
1 |
|
euex |
|- ( E! x A F x -> E. x A F x ) |
2 |
|
eldmg |
|- ( A e. _V -> ( A e. dom F <-> E. x A F x ) ) |
3 |
1 2
|
syl5ibr |
|- ( A e. _V -> ( E! x A F x -> A e. dom F ) ) |
4 |
3
|
con3d |
|- ( A e. _V -> ( -. A e. dom F -> -. E! x A F x ) ) |
5 |
|
tz6.12-2 |
|- ( -. E! x A F x -> ( F ` A ) = (/) ) |
6 |
4 5
|
syl6 |
|- ( A e. _V -> ( -. A e. dom F -> ( F ` A ) = (/) ) ) |
7 |
|
fvprc |
|- ( -. A e. _V -> ( F ` A ) = (/) ) |
8 |
7
|
a1d |
|- ( -. A e. _V -> ( -. A e. dom F -> ( F ` A ) = (/) ) ) |
9 |
6 8
|
pm2.61i |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |