Metamath Proof Explorer


Theorem ndmfvrcl

Description: Reverse closure law for function with the empty set not in its domain (if R = S ). (Contributed by NM, 26-Apr-1996) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses ndmfvrcl.1
|- dom F = S
ndmfvrcl.2
|- -. (/) e. R
Assertion ndmfvrcl
|- ( ( F ` A ) e. R -> A e. S )

Proof

Step Hyp Ref Expression
1 ndmfvrcl.1
 |-  dom F = S
2 ndmfvrcl.2
 |-  -. (/) e. R
3 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
4 3 eleq1d
 |-  ( -. A e. dom F -> ( ( F ` A ) e. R <-> (/) e. R ) )
5 2 4 mtbiri
 |-  ( -. A e. dom F -> -. ( F ` A ) e. R )
6 5 con4i
 |-  ( ( F ` A ) e. R -> A e. dom F )
7 6 1 eleqtrdi
 |-  ( ( F ` A ) e. R -> A e. S )