Metamath Proof Explorer


Theorem ndmfvrcl

Description: Reverse closure law for function with the empty set not in its domain. (Contributed by NM, 26-Apr-1996)

Ref Expression
Hypotheses ndmfvrcl.1
|- dom F = S
ndmfvrcl.2
|- -. (/) e. S
Assertion ndmfvrcl
|- ( ( F ` A ) e. S -> A e. S )

Proof

Step Hyp Ref Expression
1 ndmfvrcl.1
 |-  dom F = S
2 ndmfvrcl.2
 |-  -. (/) e. S
3 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
4 3 eleq1d
 |-  ( -. A e. dom F -> ( ( F ` A ) e. S <-> (/) e. S ) )
5 2 4 mtbiri
 |-  ( -. A e. dom F -> -. ( F ` A ) e. S )
6 5 con4i
 |-  ( ( F ` A ) e. S -> A e. dom F )
7 6 1 eleqtrdi
 |-  ( ( F ` A ) e. S -> A e. S )