Metamath Proof Explorer


Theorem ndmioo

Description: The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion ndmioo
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) )

Proof

Step Hyp Ref Expression
1 df-ioo
 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } )
2 1 ixxf
 |-  (,) : ( RR* X. RR* ) --> ~P RR*
3 2 fdmi
 |-  dom (,) = ( RR* X. RR* )
4 3 ndmov
 |-  ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) )