Step |
Hyp |
Ref |
Expression |
1 |
|
ndmov.1 |
|- dom F = ( S X. S ) |
2 |
|
ndmovord.4 |
|- R C_ ( S X. S ) |
3 |
|
ndmovord.5 |
|- -. (/) e. S |
4 |
|
ndmovord.6 |
|- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
5 |
4
|
3expia |
|- ( ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
6 |
2
|
brel |
|- ( A R B -> ( A e. S /\ B e. S ) ) |
7 |
2
|
brel |
|- ( ( C F A ) R ( C F B ) -> ( ( C F A ) e. S /\ ( C F B ) e. S ) ) |
8 |
1 3
|
ndmovrcl |
|- ( ( C F A ) e. S -> ( C e. S /\ A e. S ) ) |
9 |
8
|
simprd |
|- ( ( C F A ) e. S -> A e. S ) |
10 |
1 3
|
ndmovrcl |
|- ( ( C F B ) e. S -> ( C e. S /\ B e. S ) ) |
11 |
10
|
simprd |
|- ( ( C F B ) e. S -> B e. S ) |
12 |
9 11
|
anim12i |
|- ( ( ( C F A ) e. S /\ ( C F B ) e. S ) -> ( A e. S /\ B e. S ) ) |
13 |
7 12
|
syl |
|- ( ( C F A ) R ( C F B ) -> ( A e. S /\ B e. S ) ) |
14 |
6 13
|
pm5.21ni |
|- ( -. ( A e. S /\ B e. S ) -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
15 |
14
|
a1d |
|- ( -. ( A e. S /\ B e. S ) -> ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
16 |
5 15
|
pm2.61i |
|- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |