Step |
Hyp |
Ref |
Expression |
1 |
|
ndmovordi.2 |
|- dom F = ( S X. S ) |
2 |
|
ndmovordi.4 |
|- R C_ ( S X. S ) |
3 |
|
ndmovordi.5 |
|- -. (/) e. S |
4 |
|
ndmovordi.6 |
|- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
5 |
2
|
brel |
|- ( ( C F A ) R ( C F B ) -> ( ( C F A ) e. S /\ ( C F B ) e. S ) ) |
6 |
5
|
simpld |
|- ( ( C F A ) R ( C F B ) -> ( C F A ) e. S ) |
7 |
1 3
|
ndmovrcl |
|- ( ( C F A ) e. S -> ( C e. S /\ A e. S ) ) |
8 |
7
|
simpld |
|- ( ( C F A ) e. S -> C e. S ) |
9 |
6 8
|
syl |
|- ( ( C F A ) R ( C F B ) -> C e. S ) |
10 |
4
|
biimprd |
|- ( C e. S -> ( ( C F A ) R ( C F B ) -> A R B ) ) |
11 |
9 10
|
mpcom |
|- ( ( C F A ) R ( C F B ) -> A R B ) |