Metamath Proof Explorer


Theorem ndmovrcl

Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)

Ref Expression
Hypotheses ndmov.1
|- dom F = ( S X. S )
ndmovrcl.3
|- -. (/) e. S
Assertion ndmovrcl
|- ( ( A F B ) e. S -> ( A e. S /\ B e. S ) )

Proof

Step Hyp Ref Expression
1 ndmov.1
 |-  dom F = ( S X. S )
2 ndmovrcl.3
 |-  -. (/) e. S
3 1 ndmov
 |-  ( -. ( A e. S /\ B e. S ) -> ( A F B ) = (/) )
4 3 eleq1d
 |-  ( -. ( A e. S /\ B e. S ) -> ( ( A F B ) e. S <-> (/) e. S ) )
5 2 4 mtbiri
 |-  ( -. ( A e. S /\ B e. S ) -> -. ( A F B ) e. S )
6 5 con4i
 |-  ( ( A F B ) e. S -> ( A e. S /\ B e. S ) )