Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ndmov.1 | |- dom F = ( S X. S ) |
|
ndmovrcl.3 | |- -. (/) e. S |
||
Assertion | ndmovrcl | |- ( ( A F B ) e. S -> ( A e. S /\ B e. S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | |- dom F = ( S X. S ) |
|
2 | ndmovrcl.3 | |- -. (/) e. S |
|
3 | 1 | ndmov | |- ( -. ( A e. S /\ B e. S ) -> ( A F B ) = (/) ) |
4 | 3 | eleq1d | |- ( -. ( A e. S /\ B e. S ) -> ( ( A F B ) e. S <-> (/) e. S ) ) |
5 | 2 4 | mtbiri | |- ( -. ( A e. S /\ B e. S ) -> -. ( A F B ) e. S ) |
6 | 5 | con4i | |- ( ( A F B ) e. S -> ( A e. S /\ B e. S ) ) |