Step |
Hyp |
Ref |
Expression |
1 |
|
ndvdsi.1 |
|- A e. NN |
2 |
|
ndvdsi.2 |
|- Q e. NN0 |
3 |
|
ndvdsi.3 |
|- R e. NN |
4 |
|
ndvdsi.4 |
|- ( ( A x. Q ) + R ) = B |
5 |
|
ndvdsi.5 |
|- R < A |
6 |
1
|
nnzi |
|- A e. ZZ |
7 |
2
|
nn0zi |
|- Q e. ZZ |
8 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ Q e. ZZ ) -> A || ( A x. Q ) ) |
9 |
6 7 8
|
mp2an |
|- A || ( A x. Q ) |
10 |
|
zmulcl |
|- ( ( A e. ZZ /\ Q e. ZZ ) -> ( A x. Q ) e. ZZ ) |
11 |
6 7 10
|
mp2an |
|- ( A x. Q ) e. ZZ |
12 |
3 5
|
pm3.2i |
|- ( R e. NN /\ R < A ) |
13 |
|
ndvdsadd |
|- ( ( ( A x. Q ) e. ZZ /\ A e. NN /\ ( R e. NN /\ R < A ) ) -> ( A || ( A x. Q ) -> -. A || ( ( A x. Q ) + R ) ) ) |
14 |
11 1 12 13
|
mp3an |
|- ( A || ( A x. Q ) -> -. A || ( ( A x. Q ) + R ) ) |
15 |
9 14
|
ax-mp |
|- -. A || ( ( A x. Q ) + R ) |
16 |
4
|
breq2i |
|- ( A || ( ( A x. Q ) + R ) <-> A || B ) |
17 |
15 16
|
mtbi |
|- -. A || B |