Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
2 |
|
nnne0 |
|- ( K e. NN -> K =/= 0 ) |
3 |
1 2
|
jca |
|- ( K e. NN -> ( K e. NN0 /\ K =/= 0 ) ) |
4 |
|
df-ne |
|- ( K =/= 0 <-> -. K = 0 ) |
5 |
4
|
anbi2i |
|- ( ( K < D /\ K =/= 0 ) <-> ( K < D /\ -. K = 0 ) ) |
6 |
|
divalg2 |
|- ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |
7 |
|
breq1 |
|- ( r = x -> ( r < D <-> x < D ) ) |
8 |
|
oveq2 |
|- ( r = x -> ( N - r ) = ( N - x ) ) |
9 |
8
|
breq2d |
|- ( r = x -> ( D || ( N - r ) <-> D || ( N - x ) ) ) |
10 |
7 9
|
anbi12d |
|- ( r = x -> ( ( r < D /\ D || ( N - r ) ) <-> ( x < D /\ D || ( N - x ) ) ) ) |
11 |
10
|
reu4 |
|- ( E! r e. NN0 ( r < D /\ D || ( N - r ) ) <-> ( E. r e. NN0 ( r < D /\ D || ( N - r ) ) /\ A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) ) ) |
12 |
6 11
|
sylib |
|- ( ( N e. ZZ /\ D e. NN ) -> ( E. r e. NN0 ( r < D /\ D || ( N - r ) ) /\ A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) ) ) |
13 |
|
nngt0 |
|- ( D e. NN -> 0 < D ) |
14 |
13
|
3ad2ant2 |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> 0 < D ) |
15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
16 |
15
|
subid1d |
|- ( N e. ZZ -> ( N - 0 ) = N ) |
17 |
16
|
breq2d |
|- ( N e. ZZ -> ( D || ( N - 0 ) <-> D || N ) ) |
18 |
17
|
biimpar |
|- ( ( N e. ZZ /\ D || N ) -> D || ( N - 0 ) ) |
19 |
18
|
3adant2 |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> D || ( N - 0 ) ) |
20 |
14 19
|
jca |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( 0 < D /\ D || ( N - 0 ) ) ) |
21 |
20
|
3expa |
|- ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( 0 < D /\ D || ( N - 0 ) ) ) |
22 |
21
|
anim1ci |
|- ( ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) /\ ( r < D /\ D || ( N - r ) ) ) -> ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) ) |
23 |
|
0nn0 |
|- 0 e. NN0 |
24 |
|
breq1 |
|- ( x = 0 -> ( x < D <-> 0 < D ) ) |
25 |
|
oveq2 |
|- ( x = 0 -> ( N - x ) = ( N - 0 ) ) |
26 |
25
|
breq2d |
|- ( x = 0 -> ( D || ( N - x ) <-> D || ( N - 0 ) ) ) |
27 |
24 26
|
anbi12d |
|- ( x = 0 -> ( ( x < D /\ D || ( N - x ) ) <-> ( 0 < D /\ D || ( N - 0 ) ) ) ) |
28 |
27
|
anbi2d |
|- ( x = 0 -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) <-> ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) ) ) |
29 |
|
eqeq2 |
|- ( x = 0 -> ( r = x <-> r = 0 ) ) |
30 |
28 29
|
imbi12d |
|- ( x = 0 -> ( ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) <-> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) ) |
31 |
30
|
rspcv |
|- ( 0 e. NN0 -> ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) ) |
32 |
23 31
|
ax-mp |
|- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( r < D /\ D || ( N - r ) ) /\ ( 0 < D /\ D || ( N - 0 ) ) ) -> r = 0 ) ) |
33 |
22 32
|
syl5 |
|- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) /\ ( r < D /\ D || ( N - r ) ) ) -> r = 0 ) ) |
34 |
33
|
expd |
|- ( A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
35 |
34
|
ralimi |
|- ( A. r e. NN0 A. x e. NN0 ( ( ( r < D /\ D || ( N - r ) ) /\ ( x < D /\ D || ( N - x ) ) ) -> r = x ) -> A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
36 |
12 35
|
simpl2im |
|- ( ( N e. ZZ /\ D e. NN ) -> A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
37 |
|
r19.21v |
|- ( A. r e. NN0 ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) <-> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
38 |
36 37
|
sylib |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( ( N e. ZZ /\ D e. NN ) /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
39 |
38
|
expd |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) ) |
40 |
39
|
pm2.43i |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) ) |
41 |
40
|
3impia |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) ) |
42 |
|
breq1 |
|- ( r = K -> ( r < D <-> K < D ) ) |
43 |
|
oveq2 |
|- ( r = K -> ( N - r ) = ( N - K ) ) |
44 |
43
|
breq2d |
|- ( r = K -> ( D || ( N - r ) <-> D || ( N - K ) ) ) |
45 |
42 44
|
anbi12d |
|- ( r = K -> ( ( r < D /\ D || ( N - r ) ) <-> ( K < D /\ D || ( N - K ) ) ) ) |
46 |
|
eqeq1 |
|- ( r = K -> ( r = 0 <-> K = 0 ) ) |
47 |
45 46
|
imbi12d |
|- ( r = K -> ( ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) <-> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
48 |
47
|
rspcv |
|- ( K e. NN0 -> ( A. r e. NN0 ( ( r < D /\ D || ( N - r ) ) -> r = 0 ) -> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
49 |
41 48
|
syl5com |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) ) ) |
50 |
|
pm4.14 |
|- ( ( ( K < D /\ D || ( N - K ) ) -> K = 0 ) <-> ( ( K < D /\ -. K = 0 ) -> -. D || ( N - K ) ) ) |
51 |
49 50
|
syl6ib |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ -. K = 0 ) -> -. D || ( N - K ) ) ) ) |
52 |
5 51
|
syl7bi |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( ( K < D /\ K =/= 0 ) -> -. D || ( N - K ) ) ) ) |
53 |
52
|
exp4a |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K e. NN0 -> ( K < D -> ( K =/= 0 -> -. D || ( N - K ) ) ) ) ) |
54 |
53
|
com23 |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( K e. NN0 -> ( K =/= 0 -> -. D || ( N - K ) ) ) ) ) |
55 |
54
|
imp4a |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( ( K e. NN0 /\ K =/= 0 ) -> -. D || ( N - K ) ) ) ) |
56 |
3 55
|
syl7 |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( K < D -> ( K e. NN -> -. D || ( N - K ) ) ) ) |
57 |
56
|
impcomd |
|- ( ( N e. ZZ /\ D e. NN /\ D || N ) -> ( ( K e. NN /\ K < D ) -> -. D || ( N - K ) ) ) |
58 |
57
|
3expia |
|- ( ( N e. ZZ /\ D e. NN ) -> ( D || N -> ( ( K e. NN /\ K < D ) -> -. D || ( N - K ) ) ) ) |
59 |
58
|
com23 |
|- ( ( N e. ZZ /\ D e. NN ) -> ( ( K e. NN /\ K < D ) -> ( D || N -> -. D || ( N - K ) ) ) ) |
60 |
59
|
3impia |
|- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N - K ) ) ) |