Metamath Proof Explorer


Theorem ndxarg

Description: Get the numeric argument from a defined structure component extractor such as df-base . (Contributed by Mario Carneiro, 6-Oct-2013)

Ref Expression
Hypotheses ndxarg.e
|- E = Slot N
ndxarg.n
|- N e. NN
Assertion ndxarg
|- ( E ` ndx ) = N

Proof

Step Hyp Ref Expression
1 ndxarg.e
 |-  E = Slot N
2 ndxarg.n
 |-  N e. NN
3 df-ndx
 |-  ndx = ( _I |` NN )
4 nnex
 |-  NN e. _V
5 resiexg
 |-  ( NN e. _V -> ( _I |` NN ) e. _V )
6 4 5 ax-mp
 |-  ( _I |` NN ) e. _V
7 3 6 eqeltri
 |-  ndx e. _V
8 7 1 strfvn
 |-  ( E ` ndx ) = ( ndx ` N )
9 3 fveq1i
 |-  ( ndx ` N ) = ( ( _I |` NN ) ` N )
10 fvresi
 |-  ( N e. NN -> ( ( _I |` NN ) ` N ) = N )
11 2 10 ax-mp
 |-  ( ( _I |` NN ) ` N ) = N
12 8 9 11 3eqtri
 |-  ( E ` ndx ) = N