Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
ne0gt0d.2 | |- ( ph -> 0 <_ A ) |
||
ne0gt0d.3 | |- ( ph -> A =/= 0 ) |
||
Assertion | ne0gt0d | |- ( ph -> 0 < A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | |- ( ph -> A e. RR ) |
|
2 | ne0gt0d.2 | |- ( ph -> 0 <_ A ) |
|
3 | ne0gt0d.3 | |- ( ph -> A =/= 0 ) |
|
4 | ne0gt0 | |- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> 0 < A ) ) |
|
5 | 1 2 4 | syl2anc | |- ( ph -> ( A =/= 0 <-> 0 < A ) ) |
6 | 3 5 | mpbid | |- ( ph -> 0 < A ) |