Metamath Proof Explorer


Theorem ne0gt0d

Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ne0gt0d.2
|- ( ph -> 0 <_ A )
ne0gt0d.3
|- ( ph -> A =/= 0 )
Assertion ne0gt0d
|- ( ph -> 0 < A )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ne0gt0d.2
 |-  ( ph -> 0 <_ A )
3 ne0gt0d.3
 |-  ( ph -> A =/= 0 )
4 ne0gt0
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> 0 < A ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( A =/= 0 <-> 0 < A ) )
6 3 5 mpbid
 |-  ( ph -> 0 < A )