Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007) (Proof shortened by Wolf Lammen, 24-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon1abid.1 | |- ( ph -> ( -. ps <-> A = B ) ) |
|
| Assertion | necon1abid | |- ( ph -> ( A =/= B <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1abid.1 | |- ( ph -> ( -. ps <-> A = B ) ) |
|
| 2 | notnotb | |- ( ps <-> -. -. ps ) |
|
| 3 | 1 | necon3bbid | |- ( ph -> ( -. -. ps <-> A =/= B ) ) |
| 4 | 2 3 | bitr2id | |- ( ph -> ( A =/= B <-> ps ) ) |