Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007) (Proof shortened by Wolf Lammen, 24-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon1abid.1 | |- ( ph -> ( -. ps <-> A = B ) ) |
|
Assertion | necon1abid | |- ( ph -> ( A =/= B <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1abid.1 | |- ( ph -> ( -. ps <-> A = B ) ) |
|
2 | notnotb | |- ( ps <-> -. -. ps ) |
|
3 | 1 | necon3bbid | |- ( ph -> ( -. -. ps <-> A =/= B ) ) |
4 | 2 3 | bitr2id | |- ( ph -> ( A =/= B <-> ps ) ) |