Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon1abii.1 | |- ( -. ph <-> A = B ) |
|
| Assertion | necon1abii | |- ( A =/= B <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1abii.1 | |- ( -. ph <-> A = B ) |
|
| 2 | notnotb | |- ( ph <-> -. -. ph ) |
|
| 3 | 1 | necon3bbii | |- ( -. -. ph <-> A =/= B ) |
| 4 | 2 3 | bitr2i | |- ( A =/= B <-> ph ) |