Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007) (Proof shortened by Wolf Lammen, 25-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon1abii.1 | |- ( -. ph <-> A = B ) |
|
Assertion | necon1abii | |- ( A =/= B <-> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1abii.1 | |- ( -. ph <-> A = B ) |
|
2 | notnotb | |- ( ph <-> -. -. ph ) |
|
3 | 1 | necon3bbii | |- ( -. -. ph <-> A =/= B ) |
4 | 2 3 | bitr2i | |- ( A =/= B <-> ph ) |