Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007) (Proof shortened by Wolf Lammen, 24-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon2abid.1 | |- ( ph -> ( A = B <-> -. ps ) ) |
|
Assertion | necon2abid | |- ( ph -> ( ps <-> A =/= B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2abid.1 | |- ( ph -> ( A = B <-> -. ps ) ) |
|
2 | notnotb | |- ( ps <-> -. -. ps ) |
|
3 | 1 | necon3abid | |- ( ph -> ( A =/= B <-> -. -. ps ) ) |
4 | 2 3 | bitr4id | |- ( ph -> ( ps <-> A =/= B ) ) |