Description: Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007) (Proof shortened by Wolf Lammen, 24-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon2abid.1 | |- ( ph -> ( A = B <-> -. ps ) ) |
|
| Assertion | necon2abid | |- ( ph -> ( ps <-> A =/= B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2abid.1 | |- ( ph -> ( A = B <-> -. ps ) ) |
|
| 2 | notnotb | |- ( ps <-> -. -. ps ) |
|
| 3 | 1 | necon3abid | |- ( ph -> ( A =/= B <-> -. -. ps ) ) |
| 4 | 2 3 | bitr4id | |- ( ph -> ( ps <-> A =/= B ) ) |