Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007) (Proof shortened by Wolf Lammen, 24-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon2bbid.1 | |- ( ph -> ( ps <-> A =/= B ) ) |
|
Assertion | necon2bbid | |- ( ph -> ( A = B <-> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bbid.1 | |- ( ph -> ( ps <-> A =/= B ) ) |
|
2 | notnotb | |- ( ps <-> -. -. ps ) |
|
3 | 1 2 | bitr3di | |- ( ph -> ( A =/= B <-> -. -. ps ) ) |
4 | 3 | necon4abid | |- ( ph -> ( A = B <-> -. ps ) ) |