Description: Negative is one-to-one. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | neg11 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq | |- ( -u A = -u B -> -u -u A = -u -u B ) |
|
2 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
3 | negneg | |- ( B e. CC -> -u -u B = B ) |
|
4 | 2 3 | eqeqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( -u -u A = -u -u B <-> A = B ) ) |
5 | 1 4 | syl5ib | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B -> A = B ) ) |
6 | negeq | |- ( A = B -> -u A = -u B ) |
|
7 | 5 6 | impbid1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B <-> A = B ) ) |