Metamath Proof Explorer


Theorem neg11ad

Description: The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 . Generalization of neg11d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
neg11ad.2
|- ( ph -> B e. CC )
Assertion neg11ad
|- ( ph -> ( -u A = -u B <-> A = B ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 neg11ad.2
 |-  ( ph -> B e. CC )
3 neg11
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B <-> A = B ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( -u A = -u B <-> A = B ) )