Description: The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 . Generalization of neg11d . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
neg11ad.2 | |- ( ph -> B e. CC ) |
||
Assertion | neg11ad | |- ( ph -> ( -u A = -u B <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | neg11ad.2 | |- ( ph -> B e. CC ) |
|
3 | neg11 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B <-> A = B ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( -u A = -u B <-> A = B ) ) |