Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| neg11d.3 | |- ( ph -> -u A = -u B ) |
||
| Assertion | neg11d | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | neg11d.3 | |- ( ph -> -u A = -u B ) |
|
| 4 | 1 2 | neg11ad | |- ( ph -> ( -u A = -u B <-> A = B ) ) |
| 5 | 3 4 | mpbid | |- ( ph -> A = B ) |