Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
pncand.2 | |- ( ph -> B e. CC ) |
||
neg11d.3 | |- ( ph -> -u A = -u B ) |
||
Assertion | neg11d | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | pncand.2 | |- ( ph -> B e. CC ) |
|
3 | neg11d.3 | |- ( ph -> -u A = -u B ) |
|
4 | 1 2 | neg11ad | |- ( ph -> ( -u A = -u B <-> A = B ) ) |
5 | 3 4 | mpbid | |- ( ph -> A = B ) |