Metamath Proof Explorer


Theorem neg11i

Description: Negative is one-to-one. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
Assertion neg11i
|- ( -u A = -u B <-> A = B )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 neg11
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u A = -u B <-> A = B ) )
4 1 2 3 mp2an
 |-  ( -u A = -u B <-> A = B )