Metamath Proof Explorer


Theorem neg1cn

Description: -1 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016)

Ref Expression
Assertion neg1cn
|- -u 1 e. CC

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 1 negcli
 |-  -u 1 e. CC