Metamath Proof Explorer


Theorem neg1ne0

Description: -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1ne0
|- -u 1 =/= 0

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 ax-1ne0
 |-  1 =/= 0
3 1 2 negne0i
 |-  -u 1 =/= 0