Metamath Proof Explorer


Theorem negcld

Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1
|- ( ph -> A e. CC )
Assertion negcld
|- ( ph -> -u A e. CC )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 negcl
 |-  ( A e. CC -> -u A e. CC )
3 1 2 syl
 |-  ( ph -> -u A e. CC )