Metamath Proof Explorer


Theorem negcli

Description: Closure law for negative. (Contributed by NM, 26-Nov-1994)

Ref Expression
Hypothesis negidi.1
|- A e. CC
Assertion negcli
|- -u A e. CC

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 negcl
 |-  ( A e. CC -> -u A e. CC )
3 1 2 ax-mp
 |-  -u A e. CC