| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcncfOLD.1 |  |-  F = ( x e. A |-> -u x ) | 
						
							| 2 |  | ssel2 |  |-  ( ( A C_ CC /\ x e. A ) -> x e. CC ) | 
						
							| 3 | 2 | mulm1d |  |-  ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = -u x ) | 
						
							| 4 | 3 | mpteq2dva |  |-  ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) = ( x e. A |-> -u x ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) = F ) | 
						
							| 6 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 7 | 6 | mulcn |  |-  x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 8 | 7 | a1i |  |-  ( A C_ CC -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 9 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 10 |  | ssid |  |-  CC C_ CC | 
						
							| 11 |  | cncfmptc |  |-  ( ( -u 1 e. CC /\ A C_ CC /\ CC C_ CC ) -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) | 
						
							| 12 | 9 10 11 | mp3an13 |  |-  ( A C_ CC -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) | 
						
							| 13 |  | cncfmptid |  |-  ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) | 
						
							| 14 | 10 13 | mpan2 |  |-  ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) | 
						
							| 15 | 6 8 12 14 | cncfmpt2f |  |-  ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) e. ( A -cn-> CC ) ) | 
						
							| 16 | 5 15 | eqeltrrd |  |-  ( A C_ CC -> F e. ( A -cn-> CC ) ) |