| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negcncfg.1 |  |-  ( ph -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) | 
						
							| 2 |  | df-neg |  |-  -u B = ( 0 - B ) | 
						
							| 3 | 2 | a1i |  |-  ( ( ph /\ x e. A ) -> -u B = ( 0 - B ) ) | 
						
							| 4 | 3 | mpteq2dva |  |-  ( ph -> ( x e. A |-> -u B ) = ( x e. A |-> ( 0 - B ) ) ) | 
						
							| 5 |  | eqid |  |-  ( x e. CC |-> 0 ) = ( x e. CC |-> 0 ) | 
						
							| 6 |  | 0cn |  |-  0 e. CC | 
						
							| 7 |  | ssidd |  |-  ( 0 e. CC -> CC C_ CC ) | 
						
							| 8 |  | id |  |-  ( 0 e. CC -> 0 e. CC ) | 
						
							| 9 | 7 8 7 | constcncfg |  |-  ( 0 e. CC -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) | 
						
							| 10 | 6 9 | mp1i |  |-  ( ph -> ( x e. CC |-> 0 ) e. ( CC -cn-> CC ) ) | 
						
							| 11 |  | cncfrss |  |-  ( ( x e. A |-> B ) e. ( A -cn-> CC ) -> A C_ CC ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> A C_ CC ) | 
						
							| 13 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 14 | 6 | a1i |  |-  ( ( ph /\ x e. A ) -> 0 e. CC ) | 
						
							| 15 | 5 10 12 13 14 | cncfmptssg |  |-  ( ph -> ( x e. A |-> 0 ) e. ( A -cn-> CC ) ) | 
						
							| 16 | 15 1 | subcncf |  |-  ( ph -> ( x e. A |-> ( 0 - B ) ) e. ( A -cn-> CC ) ) | 
						
							| 17 | 4 16 | eqeltrd |  |-  ( ph -> ( x e. A |-> -u B ) e. ( A -cn-> CC ) ) |