Metamath Proof Explorer


Theorem negcon1ad

Description: Contraposition law for unary minus. One-way deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
negcon1ad.2
|- ( ph -> -u A = B )
Assertion negcon1ad
|- ( ph -> -u B = A )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 negcon1ad.2
 |-  ( ph -> -u A = B )
3 1 negcld
 |-  ( ph -> -u A e. CC )
4 2 3 eqeltrrd
 |-  ( ph -> B e. CC )
5 1 4 negcon1d
 |-  ( ph -> ( -u A = B <-> -u B = A ) )
6 2 5 mpbid
 |-  ( ph -> -u B = A )