Metamath Proof Explorer


Theorem negcon1d

Description: Contraposition law for unary minus. Deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
negcon1d.2
|- ( ph -> B e. CC )
Assertion negcon1d
|- ( ph -> ( -u A = B <-> -u B = A ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 negcon1d.2
 |-  ( ph -> B e. CC )
3 negcon1
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( -u A = B <-> -u B = A ) )