Description: Contraposition law for unary minus. Deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
negcon1d.2 | |- ( ph -> B e. CC ) |
||
Assertion | negcon1d | |- ( ph -> ( -u A = B <-> -u B = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | negcon1d.2 | |- ( ph -> B e. CC ) |
|
3 | negcon1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( -u A = B <-> -u B = A ) ) |