Description: Negative contraposition law. (Contributed by NM, 14-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negcon2 | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> B = -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( A = -u B <-> -u B = A ) |
|
| 2 | negcon1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) ) |
|
| 3 | 1 2 | bitr4id | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> -u A = B ) ) |
| 4 | eqcom | |- ( -u A = B <-> B = -u A ) |
|
| 5 | 3 4 | bitrdi | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> B = -u A ) ) |