Description: Negative contraposition law. (Contributed by NM, 14-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | negcon2 | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> B = -u A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom | |- ( A = -u B <-> -u B = A ) |
|
2 | negcon1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) ) |
|
3 | 1 2 | bitr4id | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> -u A = B ) ) |
4 | eqcom | |- ( -u A = B <-> B = -u A ) |
|
5 | 3 4 | bitrdi | |- ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> B = -u A ) ) |