Metamath Proof Explorer


Theorem negcon2i

Description: Negative contraposition law. (Contributed by NM, 25-Aug-1999)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
Assertion negcon2i
|- ( A = -u B <-> B = -u A )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 negcon2
 |-  ( ( A e. CC /\ B e. CC ) -> ( A = -u B <-> B = -u A ) )
4 1 2 3 mp2an
 |-  ( A = -u B <-> B = -u A )