Description: Distribution of negative over addition. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | negdi | |- ( ( A e. CC /\ B e. CC ) -> -u ( A + B ) = ( -u A + -u B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subneg | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( A + B ) ) |
|
2 | 1 | negeqd | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - -u B ) = -u ( A + B ) ) |
3 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
4 | negsubdi | |- ( ( A e. CC /\ -u B e. CC ) -> -u ( A - -u B ) = ( -u A + -u B ) ) |
|
5 | 3 4 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - -u B ) = ( -u A + -u B ) ) |
6 | 2 5 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> -u ( A + B ) = ( -u A + -u B ) ) |