Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
2 |
|
znegcl |
|- ( M e. ZZ -> -u M e. ZZ ) |
3 |
2
|
anim1i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M e. ZZ /\ N e. ZZ ) ) |
4 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
5 |
4
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> -u x e. ZZ ) |
6 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
8 |
|
mul2neg |
|- ( ( x e. CC /\ M e. CC ) -> ( -u x x. -u M ) = ( x x. M ) ) |
9 |
6 7 8
|
syl2anr |
|- ( ( M e. ZZ /\ x e. ZZ ) -> ( -u x x. -u M ) = ( x x. M ) ) |
10 |
9
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( -u x x. -u M ) = ( x x. M ) ) |
11 |
10
|
eqeq1d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( -u x x. -u M ) = N <-> ( x x. M ) = N ) ) |
12 |
11
|
biimprd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. -u M ) = N ) ) |
13 |
1 3 5 12
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> -u M || N ) ) |
14 |
|
mulneg12 |
|- ( ( x e. CC /\ M e. CC ) -> ( -u x x. M ) = ( x x. -u M ) ) |
15 |
6 7 14
|
syl2anr |
|- ( ( M e. ZZ /\ x e. ZZ ) -> ( -u x x. M ) = ( x x. -u M ) ) |
16 |
15
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( -u x x. M ) = ( x x. -u M ) ) |
17 |
16
|
eqeq1d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( -u x x. M ) = N <-> ( x x. -u M ) = N ) ) |
18 |
17
|
biimprd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. -u M ) = N -> ( -u x x. M ) = N ) ) |
19 |
3 1 5 18
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M || N -> M || N ) ) |
20 |
13 19
|
impbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> -u M || N ) ) |