Description: Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | negelrp | |- ( A e. RR -> ( -u A e. RR+ <-> A < 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp | |- ( -u A e. RR+ <-> ( -u A e. RR /\ 0 < -u A ) ) |
|
2 | lt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
|
3 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
4 | 3 | biantrurd | |- ( A e. RR -> ( 0 < -u A <-> ( -u A e. RR /\ 0 < -u A ) ) ) |
5 | 2 4 | bitr2d | |- ( A e. RR -> ( ( -u A e. RR /\ 0 < -u A ) <-> A < 0 ) ) |
6 | 1 5 | syl5bb | |- ( A e. RR -> ( -u A e. RR+ <-> A < 0 ) ) |