Metamath Proof Explorer


Theorem negex

Description: A negative is a set. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion negex
|- -u A e. _V

Proof

Step Hyp Ref Expression
1 df-neg
 |-  -u A = ( 0 - A )
2 1 ovexi
 |-  -u A e. _V