| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negexpidd.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | negexpidd.2 |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 |  | negexpidd.3 |  |-  ( ph -> -. 2 || N ) | 
						
							| 4 | 1 2 | reexpcld |  |-  ( ph -> ( A ^ N ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 6 | 5 | negidd |  |-  ( ph -> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 ) | 
						
							| 7 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 8 | 7 | mulm1d |  |-  ( ph -> ( -u 1 x. A ) = -u A ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> -u A = ( -u 1 x. A ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ph -> ( -u A ^ N ) = ( ( -u 1 x. A ) ^ N ) ) | 
						
							| 11 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( N e. NN0 -> N e. ZZ ) ) | 
						
							| 13 | 12 3 | jctird |  |-  ( ph -> ( N e. NN0 -> ( N e. ZZ /\ -. 2 || N ) ) ) | 
						
							| 14 | 2 13 | mpd |  |-  ( ph -> ( N e. ZZ /\ -. 2 || N ) ) | 
						
							| 15 |  | m1expo |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) ) | 
						
							| 17 | 14 16 | mpd |  |-  ( ph -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ph -> ( ( -u 1 ^ N ) x. ( A ^ N ) ) = ( -u 1 x. ( A ^ N ) ) ) | 
						
							| 19 | 5 | mulm1d |  |-  ( ph -> ( -u 1 x. ( A ^ N ) ) = -u ( A ^ N ) ) | 
						
							| 20 | 18 19 | eqtr2d |  |-  ( ph -> -u ( A ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) ) | 
						
							| 21 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 22 | 21 | a1i |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 23 | 22 7 2 | mulexpd |  |-  ( ph -> ( ( -u 1 x. A ) ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) ) | 
						
							| 24 | 20 23 | eqtr4d |  |-  ( ph -> -u ( A ^ N ) = ( ( -u 1 x. A ) ^ N ) ) | 
						
							| 25 | 10 24 | eqtr4d |  |-  ( ph -> ( -u A ^ N ) = -u ( A ^ N ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = ( ( A ^ N ) + -u ( A ^ N ) ) ) | 
						
							| 27 | 26 | eqeq1d |  |-  ( ph -> ( ( ( A ^ N ) + ( -u A ^ N ) ) = 0 <-> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 ) ) | 
						
							| 28 | 6 27 | mpbird |  |-  ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = 0 ) |