| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negf1o.1 |  |-  F = ( x e. A |-> -u x ) | 
						
							| 2 |  | negeq |  |-  ( n = -u x -> -u n = -u -u x ) | 
						
							| 3 | 2 | eleq1d |  |-  ( n = -u x -> ( -u n e. A <-> -u -u x e. A ) ) | 
						
							| 4 |  | ssel |  |-  ( A C_ RR -> ( x e. A -> x e. RR ) ) | 
						
							| 5 |  | renegcl |  |-  ( x e. RR -> -u x e. RR ) | 
						
							| 6 | 4 5 | syl6 |  |-  ( A C_ RR -> ( x e. A -> -u x e. RR ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( A C_ RR /\ x e. A ) -> -u x e. RR ) | 
						
							| 8 | 4 | imp |  |-  ( ( A C_ RR /\ x e. A ) -> x e. RR ) | 
						
							| 9 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 10 |  | negneg |  |-  ( x e. CC -> -u -u x = x ) | 
						
							| 11 | 10 | eqcomd |  |-  ( x e. CC -> x = -u -u x ) | 
						
							| 12 | 9 11 | syl |  |-  ( x e. RR -> x = -u -u x ) | 
						
							| 13 | 12 | eleq1d |  |-  ( x e. RR -> ( x e. A <-> -u -u x e. A ) ) | 
						
							| 14 | 13 | biimpcd |  |-  ( x e. A -> ( x e. RR -> -u -u x e. A ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A C_ RR /\ x e. A ) -> ( x e. RR -> -u -u x e. A ) ) | 
						
							| 16 | 8 15 | mpd |  |-  ( ( A C_ RR /\ x e. A ) -> -u -u x e. A ) | 
						
							| 17 | 3 7 16 | elrabd |  |-  ( ( A C_ RR /\ x e. A ) -> -u x e. { n e. RR | -u n e. A } ) | 
						
							| 18 |  | negeq |  |-  ( n = y -> -u n = -u y ) | 
						
							| 19 | 18 | eleq1d |  |-  ( n = y -> ( -u n e. A <-> -u y e. A ) ) | 
						
							| 20 | 19 | elrab |  |-  ( y e. { n e. RR | -u n e. A } <-> ( y e. RR /\ -u y e. A ) ) | 
						
							| 21 |  | simpr |  |-  ( ( y e. RR /\ -u y e. A ) -> -u y e. A ) | 
						
							| 22 | 21 | a1i |  |-  ( A C_ RR -> ( ( y e. RR /\ -u y e. A ) -> -u y e. A ) ) | 
						
							| 23 | 20 22 | biimtrid |  |-  ( A C_ RR -> ( y e. { n e. RR | -u n e. A } -> -u y e. A ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( A C_ RR /\ y e. { n e. RR | -u n e. A } ) -> -u y e. A ) | 
						
							| 25 | 4 9 | syl6com |  |-  ( x e. A -> ( A C_ RR -> x e. CC ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) -> ( A C_ RR -> x e. CC ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> x e. CC ) | 
						
							| 28 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 29 | 28 | ad3antrrr |  |-  ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> y e. CC ) | 
						
							| 30 |  | negcon2 |  |-  ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) | 
						
							| 31 | 27 29 30 | syl2anc |  |-  ( ( ( ( y e. RR /\ -u y e. A ) /\ x e. A ) /\ A C_ RR ) -> ( x = -u y <-> y = -u x ) ) | 
						
							| 32 | 31 | exp31 |  |-  ( ( y e. RR /\ -u y e. A ) -> ( x e. A -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) ) | 
						
							| 33 | 20 32 | sylbi |  |-  ( y e. { n e. RR | -u n e. A } -> ( x e. A -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) ) | 
						
							| 34 | 33 | impcom |  |-  ( ( x e. A /\ y e. { n e. RR | -u n e. A } ) -> ( A C_ RR -> ( x = -u y <-> y = -u x ) ) ) | 
						
							| 35 | 34 | impcom |  |-  ( ( A C_ RR /\ ( x e. A /\ y e. { n e. RR | -u n e. A } ) ) -> ( x = -u y <-> y = -u x ) ) | 
						
							| 36 | 1 17 24 35 | f1o2d |  |-  ( A C_ RR -> F : A -1-1-onto-> { n e. RR | -u n e. A } ) |