| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel |  |-  ( A C_ RR -> ( a e. A -> a e. RR ) ) | 
						
							| 2 |  | renegcl |  |-  ( a e. RR -> -u a e. RR ) | 
						
							| 3 | 1 2 | syl6 |  |-  ( A C_ RR -> ( a e. A -> -u a e. RR ) ) | 
						
							| 4 | 3 | ralrimiv |  |-  ( A C_ RR -> A. a e. A -u a e. RR ) | 
						
							| 5 |  | dmmptg |  |-  ( A. a e. A -u a e. RR -> dom ( a e. A |-> -u a ) = A ) | 
						
							| 6 | 4 5 | syl |  |-  ( A C_ RR -> dom ( a e. A |-> -u a ) = A ) | 
						
							| 7 | 6 | eqcomd |  |-  ( A C_ RR -> A = dom ( a e. A |-> -u a ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( A C_ RR -> ( A e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 9 |  | funmpt |  |-  Fun ( a e. A |-> -u a ) | 
						
							| 10 |  | fundmfibi |  |-  ( Fun ( a e. A |-> -u a ) -> ( ( a e. A |-> -u a ) e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( A C_ RR -> ( ( a e. A |-> -u a ) e. Fin <-> dom ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 12 | 8 11 | bitr4d |  |-  ( A C_ RR -> ( A e. Fin <-> ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 13 |  | reex |  |-  RR e. _V | 
						
							| 14 | 13 | ssex |  |-  ( A C_ RR -> A e. _V ) | 
						
							| 15 | 14 | mptexd |  |-  ( A C_ RR -> ( a e. A |-> -u a ) e. _V ) | 
						
							| 16 |  | eqid |  |-  ( a e. A |-> -u a ) = ( a e. A |-> -u a ) | 
						
							| 17 | 16 | negf1o |  |-  ( A C_ RR -> ( a e. A |-> -u a ) : A -1-1-onto-> { x e. RR | -u x e. A } ) | 
						
							| 18 |  | f1of1 |  |-  ( ( a e. A |-> -u a ) : A -1-1-onto-> { x e. RR | -u x e. A } -> ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) | 
						
							| 19 | 17 18 | syl |  |-  ( A C_ RR -> ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) | 
						
							| 20 |  | f1vrnfibi |  |-  ( ( ( a e. A |-> -u a ) e. _V /\ ( a e. A |-> -u a ) : A -1-1-> { x e. RR | -u x e. A } ) -> ( ( a e. A |-> -u a ) e. Fin <-> ran ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 21 | 15 19 20 | syl2anc |  |-  ( A C_ RR -> ( ( a e. A |-> -u a ) e. Fin <-> ran ( a e. A |-> -u a ) e. Fin ) ) | 
						
							| 22 | 1 | imp |  |-  ( ( A C_ RR /\ a e. A ) -> a e. RR ) | 
						
							| 23 | 2 | adantl |  |-  ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> -u a e. RR ) | 
						
							| 24 |  | recn |  |-  ( a e. RR -> a e. CC ) | 
						
							| 25 | 24 | negnegd |  |-  ( a e. RR -> -u -u a = a ) | 
						
							| 26 | 25 | eqcomd |  |-  ( a e. RR -> a = -u -u a ) | 
						
							| 27 | 26 | eleq1d |  |-  ( a e. RR -> ( a e. A <-> -u -u a e. A ) ) | 
						
							| 28 | 27 | biimpcd |  |-  ( a e. A -> ( a e. RR -> -u -u a e. A ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( A C_ RR /\ a e. A ) -> ( a e. RR -> -u -u a e. A ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> -u -u a e. A ) | 
						
							| 31 | 23 30 | jca |  |-  ( ( ( A C_ RR /\ a e. A ) /\ a e. RR ) -> ( -u a e. RR /\ -u -u a e. A ) ) | 
						
							| 32 | 22 31 | mpdan |  |-  ( ( A C_ RR /\ a e. A ) -> ( -u a e. RR /\ -u -u a e. A ) ) | 
						
							| 33 |  | eleq1 |  |-  ( n = -u a -> ( n e. RR <-> -u a e. RR ) ) | 
						
							| 34 |  | negeq |  |-  ( n = -u a -> -u n = -u -u a ) | 
						
							| 35 | 34 | eleq1d |  |-  ( n = -u a -> ( -u n e. A <-> -u -u a e. A ) ) | 
						
							| 36 | 33 35 | anbi12d |  |-  ( n = -u a -> ( ( n e. RR /\ -u n e. A ) <-> ( -u a e. RR /\ -u -u a e. A ) ) ) | 
						
							| 37 | 32 36 | syl5ibrcom |  |-  ( ( A C_ RR /\ a e. A ) -> ( n = -u a -> ( n e. RR /\ -u n e. A ) ) ) | 
						
							| 38 |  | simprr |  |-  ( ( A C_ RR /\ ( n e. RR /\ -u n e. A ) ) -> -u n e. A ) | 
						
							| 39 |  | recn |  |-  ( n e. RR -> n e. CC ) | 
						
							| 40 |  | negneg |  |-  ( n e. CC -> -u -u n = n ) | 
						
							| 41 | 40 | eqcomd |  |-  ( n e. CC -> n = -u -u n ) | 
						
							| 42 | 39 41 | syl |  |-  ( n e. RR -> n = -u -u n ) | 
						
							| 43 | 42 | ad2antrl |  |-  ( ( A C_ RR /\ ( n e. RR /\ -u n e. A ) ) -> n = -u -u n ) | 
						
							| 44 |  | negeq |  |-  ( a = -u n -> -u a = -u -u n ) | 
						
							| 45 | 44 | eqeq2d |  |-  ( a = -u n -> ( n = -u a <-> n = -u -u n ) ) | 
						
							| 46 | 37 38 43 45 | rspceb2dv |  |-  ( A C_ RR -> ( E. a e. A n = -u a <-> ( n e. RR /\ -u n e. A ) ) ) | 
						
							| 47 | 46 | abbidv |  |-  ( A C_ RR -> { n | E. a e. A n = -u a } = { n | ( n e. RR /\ -u n e. A ) } ) | 
						
							| 48 | 16 | rnmpt |  |-  ran ( a e. A |-> -u a ) = { n | E. a e. A n = -u a } | 
						
							| 49 |  | df-rab |  |-  { n e. RR | -u n e. A } = { n | ( n e. RR /\ -u n e. A ) } | 
						
							| 50 | 47 48 49 | 3eqtr4g |  |-  ( A C_ RR -> ran ( a e. A |-> -u a ) = { n e. RR | -u n e. A } ) | 
						
							| 51 | 50 | eleq1d |  |-  ( A C_ RR -> ( ran ( a e. A |-> -u a ) e. Fin <-> { n e. RR | -u n e. A } e. Fin ) ) | 
						
							| 52 | 12 21 51 | 3bitrd |  |-  ( A C_ RR -> ( A e. Fin <-> { n e. RR | -u n e. A } e. Fin ) ) | 
						
							| 53 | 52 | biimpa |  |-  ( ( A C_ RR /\ A e. Fin ) -> { n e. RR | -u n e. A } e. Fin ) |