Step |
Hyp |
Ref |
Expression |
1 |
|
lcmneg |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm -u M ) = ( N lcm M ) ) |
2 |
1
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N lcm -u M ) = ( N lcm M ) ) |
3 |
|
znegcl |
|- ( M e. ZZ -> -u M e. ZZ ) |
4 |
|
lcmcom |
|- ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( N lcm -u M ) ) |
5 |
3 4
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( N lcm -u M ) ) |
6 |
|
lcmcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
7 |
2 5 6
|
3eqtr4d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( M lcm N ) ) |