| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmneg |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm -u M ) = ( N lcm M ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N lcm -u M ) = ( N lcm M ) ) | 
						
							| 3 |  | znegcl |  |-  ( M e. ZZ -> -u M e. ZZ ) | 
						
							| 4 |  | lcmcom |  |-  ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( N lcm -u M ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( N lcm -u M ) ) | 
						
							| 6 |  | lcmcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) | 
						
							| 7 | 2 5 6 | 3eqtr4d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M lcm N ) = ( M lcm N ) ) |