Step |
Hyp |
Ref |
Expression |
1 |
|
neglimc.f |
|- F = ( x e. A |-> B ) |
2 |
|
neglimc.g |
|- G = ( x e. A |-> -u B ) |
3 |
|
neglimc.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
4 |
|
neglimc.c |
|- ( ph -> C e. ( F limCC D ) ) |
5 |
|
limccl |
|- ( F limCC D ) C_ CC |
6 |
5 4
|
sselid |
|- ( ph -> C e. CC ) |
7 |
6
|
negcld |
|- ( ph -> -u C e. CC ) |
8 |
3 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
9 |
1 3 4
|
limcmptdm |
|- ( ph -> A C_ CC ) |
10 |
|
limcrcl |
|- ( C e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
11 |
4 10
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
12 |
11
|
simp3d |
|- ( ph -> D e. CC ) |
13 |
8 9 12
|
ellimc3 |
|- ( ph -> ( C e. ( F limCC D ) <-> ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) ) ) ) |
14 |
4 13
|
mpbid |
|- ( ph -> ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) ) ) |
15 |
14
|
simprd |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) ) |
16 |
15
|
r19.21bi |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) ) |
17 |
|
simplll |
|- ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) -> ph ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> ph ) |
19 |
|
simp1r |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> v e. A ) |
20 |
|
simp3 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) |
21 |
|
simp2 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) ) |
22 |
20 21
|
mpd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) |
23 |
|
nfv |
|- F/ x ( ph /\ v e. A ) |
24 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> -u B ) |
25 |
2 24
|
nfcxfr |
|- F/_ x G |
26 |
|
nfcv |
|- F/_ x v |
27 |
25 26
|
nffv |
|- F/_ x ( G ` v ) |
28 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
29 |
1 28
|
nfcxfr |
|- F/_ x F |
30 |
29 26
|
nffv |
|- F/_ x ( F ` v ) |
31 |
30
|
nfneg |
|- F/_ x -u ( F ` v ) |
32 |
27 31
|
nfeq |
|- F/ x ( G ` v ) = -u ( F ` v ) |
33 |
23 32
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( G ` v ) = -u ( F ` v ) ) |
34 |
|
eleq1w |
|- ( x = v -> ( x e. A <-> v e. A ) ) |
35 |
34
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. A ) <-> ( ph /\ v e. A ) ) ) |
36 |
|
fveq2 |
|- ( x = v -> ( G ` x ) = ( G ` v ) ) |
37 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
38 |
37
|
negeqd |
|- ( x = v -> -u ( F ` x ) = -u ( F ` v ) ) |
39 |
36 38
|
eqeq12d |
|- ( x = v -> ( ( G ` x ) = -u ( F ` x ) <-> ( G ` v ) = -u ( F ` v ) ) ) |
40 |
35 39
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( G ` x ) = -u ( F ` x ) ) <-> ( ( ph /\ v e. A ) -> ( G ` v ) = -u ( F ` v ) ) ) ) |
41 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
42 |
3
|
negcld |
|- ( ( ph /\ x e. A ) -> -u B e. CC ) |
43 |
2
|
fvmpt2 |
|- ( ( x e. A /\ -u B e. CC ) -> ( G ` x ) = -u B ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = -u B ) |
45 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
46 |
41 3 45
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
47 |
46
|
negeqd |
|- ( ( ph /\ x e. A ) -> -u ( F ` x ) = -u B ) |
48 |
44 47
|
eqtr4d |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = -u ( F ` x ) ) |
49 |
33 40 48
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( G ` v ) = -u ( F ` v ) ) |
50 |
49
|
oveq1d |
|- ( ( ph /\ v e. A ) -> ( ( G ` v ) - -u C ) = ( -u ( F ` v ) - -u C ) ) |
51 |
8
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
52 |
6
|
adantr |
|- ( ( ph /\ v e. A ) -> C e. CC ) |
53 |
51 52
|
negsubdi3d |
|- ( ( ph /\ v e. A ) -> -u ( ( F ` v ) - C ) = ( -u ( F ` v ) - -u C ) ) |
54 |
50 53
|
eqtr4d |
|- ( ( ph /\ v e. A ) -> ( ( G ` v ) - -u C ) = -u ( ( F ` v ) - C ) ) |
55 |
54
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( G ` v ) - -u C ) ) = ( abs ` -u ( ( F ` v ) - C ) ) ) |
56 |
51 52
|
subcld |
|- ( ( ph /\ v e. A ) -> ( ( F ` v ) - C ) e. CC ) |
57 |
56
|
absnegd |
|- ( ( ph /\ v e. A ) -> ( abs ` -u ( ( F ` v ) - C ) ) = ( abs ` ( ( F ` v ) - C ) ) ) |
58 |
55 57
|
eqtrd |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( G ` v ) - -u C ) ) = ( abs ` ( ( F ` v ) - C ) ) ) |
59 |
58
|
adantr |
|- ( ( ( ph /\ v e. A ) /\ ( abs ` ( ( F ` v ) - C ) ) < y ) -> ( abs ` ( ( G ` v ) - -u C ) ) = ( abs ` ( ( F ` v ) - C ) ) ) |
60 |
|
simpr |
|- ( ( ( ph /\ v e. A ) /\ ( abs ` ( ( F ` v ) - C ) ) < y ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) |
61 |
59 60
|
eqbrtrd |
|- ( ( ( ph /\ v e. A ) /\ ( abs ` ( ( F ` v ) - C ) ) < y ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) |
62 |
18 19 22 61
|
syl21anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) /\ ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) /\ ( v =/= D /\ ( abs ` ( v - D ) ) < w ) ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) |
63 |
62
|
3exp |
|- ( ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) /\ v e. A ) -> ( ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) -> ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) ) |
64 |
63
|
ralimdva |
|- ( ( ( ph /\ y e. RR+ ) /\ w e. RR+ ) -> ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) -> A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) ) |
65 |
64
|
reximdva |
|- ( ( ph /\ y e. RR+ ) -> ( E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( F ` v ) - C ) ) < y ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) ) |
66 |
16 65
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) |
67 |
66
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) |
68 |
42 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
69 |
68 9 12
|
ellimc3 |
|- ( ph -> ( -u C e. ( G limCC D ) <-> ( -u C e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( G ` v ) - -u C ) ) < y ) ) ) ) |
70 |
7 67 69
|
mpbir2and |
|- ( ph -> -u C e. ( G limCC D ) ) |