Step |
Hyp |
Ref |
Expression |
1 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
2 |
|
recn |
|- ( ( A / B ) e. RR -> ( A / B ) e. CC ) |
3 |
|
znegclb |
|- ( ( A / B ) e. CC -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
4 |
1 2 3
|
3syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
5 |
|
recn |
|- ( A e. RR -> A e. CC ) |
6 |
5
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
7 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
8 |
7
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
9 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
10 |
9
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
11 |
6 8 10
|
divnegd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( A / B ) = ( -u A / B ) ) |
12 |
11
|
eleq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
13 |
4 12
|
bitrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
14 |
|
mod0 |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A / B ) e. ZZ ) ) |
15 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
16 |
|
mod0 |
|- ( ( -u A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
17 |
15 16
|
sylan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
18 |
13 14 17
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |