Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
2 |
|
ssel |
|- ( A C_ RR -> ( x e. A -> x e. RR ) ) |
3 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
4 |
|
negeq |
|- ( z = -u x -> -u z = -u -u x ) |
5 |
4
|
eleq1d |
|- ( z = -u x -> ( -u z e. A <-> -u -u x e. A ) ) |
6 |
5
|
elrab3 |
|- ( -u x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
7 |
3 6
|
syl |
|- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
8 |
|
recn |
|- ( x e. RR -> x e. CC ) |
9 |
8
|
negnegd |
|- ( x e. RR -> -u -u x = x ) |
10 |
9
|
eleq1d |
|- ( x e. RR -> ( -u -u x e. A <-> x e. A ) ) |
11 |
7 10
|
bitrd |
|- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> x e. A ) ) |
12 |
11
|
biimprd |
|- ( x e. RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
13 |
2 12
|
syli |
|- ( A C_ RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
14 |
|
elex2 |
|- ( -u x e. { z e. RR | -u z e. A } -> E. y y e. { z e. RR | -u z e. A } ) |
15 |
13 14
|
syl6 |
|- ( A C_ RR -> ( x e. A -> E. y y e. { z e. RR | -u z e. A } ) ) |
16 |
|
n0 |
|- ( { z e. RR | -u z e. A } =/= (/) <-> E. y y e. { z e. RR | -u z e. A } ) |
17 |
15 16
|
syl6ibr |
|- ( A C_ RR -> ( x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
18 |
17
|
exlimdv |
|- ( A C_ RR -> ( E. x x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
19 |
1 18
|
syl5bi |
|- ( A C_ RR -> ( A =/= (/) -> { z e. RR | -u z e. A } =/= (/) ) ) |
20 |
19
|
imp |
|- ( ( A C_ RR /\ A =/= (/) ) -> { z e. RR | -u z e. A } =/= (/) ) |