| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 2 |
|
ssel |
|- ( A C_ RR -> ( x e. A -> x e. RR ) ) |
| 3 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
| 4 |
|
negeq |
|- ( z = -u x -> -u z = -u -u x ) |
| 5 |
4
|
eleq1d |
|- ( z = -u x -> ( -u z e. A <-> -u -u x e. A ) ) |
| 6 |
5
|
elrab3 |
|- ( -u x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
| 7 |
3 6
|
syl |
|- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> -u -u x e. A ) ) |
| 8 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 9 |
8
|
negnegd |
|- ( x e. RR -> -u -u x = x ) |
| 10 |
9
|
eleq1d |
|- ( x e. RR -> ( -u -u x e. A <-> x e. A ) ) |
| 11 |
7 10
|
bitrd |
|- ( x e. RR -> ( -u x e. { z e. RR | -u z e. A } <-> x e. A ) ) |
| 12 |
11
|
biimprd |
|- ( x e. RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
| 13 |
2 12
|
syli |
|- ( A C_ RR -> ( x e. A -> -u x e. { z e. RR | -u z e. A } ) ) |
| 14 |
|
elex2 |
|- ( -u x e. { z e. RR | -u z e. A } -> E. y y e. { z e. RR | -u z e. A } ) |
| 15 |
13 14
|
syl6 |
|- ( A C_ RR -> ( x e. A -> E. y y e. { z e. RR | -u z e. A } ) ) |
| 16 |
|
n0 |
|- ( { z e. RR | -u z e. A } =/= (/) <-> E. y y e. { z e. RR | -u z e. A } ) |
| 17 |
15 16
|
imbitrrdi |
|- ( A C_ RR -> ( x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 18 |
17
|
exlimdv |
|- ( A C_ RR -> ( E. x x e. A -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 19 |
1 18
|
biimtrid |
|- ( A C_ RR -> ( A =/= (/) -> { z e. RR | -u z e. A } =/= (/) ) ) |
| 20 |
19
|
imp |
|- ( ( A C_ RR /\ A =/= (/) ) -> { z e. RR | -u z e. A } =/= (/) ) |